در این مطلب درباره یک مدار برای تشخیص عبور از صفر ( zero cross detection ) صحبت می کنیم.
اگه ما در پروژمون نیاز داشته باشیم که بدونیم شکل موج ولتاژ، مثلا برق شهر دقیقا در چه لحظه ای از صفر عبور می کنه ، می تونیم از این مدار کوچک استفاده کنیم. اساس کار اینجوریه که ما پایه های مربوط به led داخلی اپتوکوپلرهای ترانزیستوری مثل cny17 رو سر و ته به هم وصل می کنیم و این ترکیب رو با یک مقاومت مناسب سری می کنیم. حالا اگه یه سیگنال متناوب به دو سر این مدار وصل کنیم، هر بار که شکل موج از صفر عبور می کنه ، ترانزیستور موجود در سمت دیگه آی سی ها در همون لحظه یه مدت کوتاه خاموش می شه و ولتاژ Vcc به خروجی ارسال می شه. البته راههای دیگه ای هم برای تشخیص عبور از صفر وجود داره و این فقط یکی از اونهاست.

zero cross
zero cross detection circuit

اما نکات مهم:
ابتدا با در نظر گرفتن اینکه سیگنال مورد نظر در واقع همون برق 220 ولت متناوب هست، راهی لازمه که از اون نمونه برداری کنیم. چرا که led های این اپتوکوپلرها می تونند جریان محدودی رو ازخودشون عبور بدن و ولتاژ 220 ولت خیلی زیاده و اگر هم با مقاومت سری جریان رو محدود کنیم با یه محاسبه ساده متوجه می شیم که این مقاومت باید توتن بسیار بالایی رو تحمل کنه و اهم بالایی هم داشته باشه. بنابراین راه ساده تر استفاده از یه ترانس به عنوان مبدل ولتاژه. این کار باعث می شه آی سی ها آسیب نبینن و در ضمن باعث ایزولاسیون و ایمن شدن مدار از ولتاژ بالا می شه. نکته دیگه اینه که وقتی از یه ترانس به عنوان نمونه بردار استفاده می کنید، دیگه اون رو برای تغذیه مدار و ایجاد Vcc به کار نبرید. چونکه شکل موجش به هم می ریزه و دچار اعوجاج می شه و کارتون رو مختل می کنه.
یکی از کاربردهای این مدار ساخت دیمر دیجیتال هست که در آینده معرفی خواهد شد.

احتمالا تا حالا براتون پیش اومده که مدارتون نیاز به تغذیه دوبل داشته باشه ، اما شما ترجیح بدین که از تغذیه ساده استفاده کنین. این مساله به خصوص در مدارات مربوط به اپ امپ زیاد پیش میاد. چون خیلی از مدارهای مربوط به اپ امپ نیاز به سه ترمینال تغذیه مثبت و منفی و زمین دارند. مثل بعضی تقویت کننده ها، اسیلاتورها و مولد موج شکل موج مربعی.
دیمر مداری هست که با برش زدن ولتاژ سینوسی منبع در زمان مشخص شده در هم نیم سیکل فقط بخشی از توان رو به بار انتقال می ده.
برای رفع این مشکل یک راه حل ساده وجود داره به نام virtual ground یا همون زمین مجازی. در این ترفند کافیه مدار زیر رو ببندید.

virtual ground

عملکرد مدار خیلی ساده س. کافیه با دو تا مقاومت R1 و R2 یک مدار تقسیم ولتاژ درست کنیم و سر وسط رو به ورودی مثبت اپ امپ متصل کنیم. خروجی و پایه ورودی منفی اپ امپ رو هم به هم وصل می کنیم و در واقع با این کار از اپ امپ به صورت بافر استفاده می شه و ولتاژی که در خروجی ظاهر می شه برابر ولتاژ پایه ورودی مثبت اپ امپ خواهد بود.

به این ترتیب می تونیم از این پایه به عنوان زمین مدار استفاده کنیم و از GND به عنوان سر منفی تغذیه و از VCC به عنوان سر مثبت تغذیه.

اگه زمین مجازی رو برای استفاده در یک مدار که توش اپ امپ به کار رفته لازم داشته باشیم، به راحتی می تونیم از یک آی سی اپ امپ 2 تایی یا 4 تایی استفاده کنیم و یکی از اپ امپها رو به ایجاد زمین مجازی اختصاص بدیم.

مدار راه انداز رله

بدون دیدگاه

رله وسیله ای الکترومکانیکی است که از یک الکترومغناطیس و یک فنر برای اتصال کنتاکت تیغه متحرک به کنتاکت ثابت و برگرداندن آن به حالت قبل استفاده می کند.

رله ها فضای کمی اشغال می کنند و برای راه اندازی بوبین ( سیم پیچ ) آن به توان زیادی نیاز نداریم. اما با استفاده از کنتاکت های رله می توان بارهایی را که توان به مراتب بیشتری مصرف می کنند کنترل نمود. مانند موتورها، هیترها و لامپها.

رله ها در شکل ها و اندازه ها و طراحی های مختلف ساخته می شوند. در شکل زیر یک رله کوچک که بوبین آن برای راه اندازی به 12vDC نیاز دارد دیده می شود.

پایه های رله

در شکل زیر نشان داده شده است که بوبین بین کدام دو پایه قرار دارد. پایه های دیگر مربوط به کنتاکت ها هستند و به پایه های بوبین اتصال ندارند. همین مساله باعث می شود که بتوانیم از کنتاکت ها به صورت ایزوله از سمت مدار فرمان استفاده کنیم و به طور مثال یک لامپ که با برق 220vAC کار می کند را به وسیله یک مدار الکترونیکی با تغذیه 12vDC کنترل کنیم.

معمولا پایه های متصل به کنتاکت ها 3 نام مختلف دارند. پایه ای که در حالت قطع و وصل بین کنتاکتها مشترک است Common نامیده می شود. پایه ای که در حالت قطع به پایه Common یا مشترک متصل هست پایه Normally Close نام دارد که به اختصار NC نوشته می شود. پایه دیگر که در حالت قطع به پایه Common یا مشترک متصل نیست و پس از فعال شدن رله به این پایه متصل می شود Normally Open یا به اختصار NO نامیده می شود.

تعداد تیغه ها و کنتاکتها و پایه ها و چگونگی اتصال آنها به یکدیگر در انواع رله ها متفاوت است. همچنین ولتاژ و جریان مورد نیاز برای راه اندازی و ولتاژ و جریان قابل تحمل برای کنتاکتها نیز به مشخصات رله بستگی دارد. به طور مثال کنتاکتهای رله ای که در شکل بالا دیده می شود در ولتاژ 250vAC می توانند حداکثر تا 10A و در ولتاژ 125vAC می توانند حداکثر تا 15A را تحمل کنند.

راه اندازی رله ها توسط مدارهای مختلفی می تواند صورت بگیرد، اما در پروژه های الکترونیکی کوچک از ترانزیستور و ماسفت استفاده می شود که می توانند کنترل ( قطع و وصل ) سریع DC را روی بوبین رله اعمال کنند.

مدار راه انداز رله توسط ترانزیستور NPN

مداری که در شکل زیر دیده می شود یکی از متداولترین مدارهای راه اندازی رله است.

وقتی ولتاژ یبس ترانزیستور صفر باشد ترانزیستور در ناحیه قطع است و مانند یک کلید باز عمل می کند. در این حالت هیچ جریانی از کلکتور و در نتیجه از بوبین عبور نمی کند و بنابراین وضعیت کنتاکت رله نیز تغییر نمی نماید.

اگر یک جریان مثبت به اندازه کافی بزرگ در بیس ترانزیستور جاری شود، ترانزیستور در ناحیه اشباع قرار می گیرد و مانند یک کلید بسته عمل می کند. جریانی که از کلکتور می گذرد باعث فعال شدن بوبین و در نتیجه اتصال کنتاکت ها می شود.

وقتی که جریان از بوبین عبور می کند، مقدار آن برابر I=V/R می شود که در اینجا R مقاومت بوبین و V ولتاژِی است که به دو سر بوبین اعمال شده است. وقتی که ترانزیستور قطع می شود جریانی که از بوبین عبور می کند کاهش یافته و میدان مغناطیسی آن از بین می رود.

اما با توجه به اینکه ترانزیستور قطع شده و این اتفاق در زمان کوتاهی رخ می دهد، بوبین به علت ماهیت سلفی با تغییر ناگهانی جریان مخالفت می کند و ولتاژ معکوس روی بوبین تشکیل می شود.

این ولتاژ مانند یک جهش با دامنه بالا است که سعی می کند مقدار جریان را ثابت نگه دارد و اگر چاره ای برای آن اندیشیده نشود به ترانزیستور آسیب می زند.

به همین منظور یک دیود با بوبین موازی می شود که به آن دیود هرزگرد یا flywheel یا freewheeling اطلاق می گردد. این دیود ولتاژ معکوس روی بوبین را روی 0.7v برش می زند و با مستهلک کردن انرژی ، از ترانزیستور محافظت می کند.

البته دیود هرزگرد فقط برای ولتاژ DC قابل اعمال است و برای رله هایی که بوبین آنها با ولتاژ AC فعال می شوند از مدار اسنابر Snubber استفاده می شود.

انتخاب ترانزیستور مناسب برای راه اندازی صحیح رله مهم است. چرا که حداقل جریان راه اندازی بوبین که معمولا روی رله نوشته شده است، باید از جریان کلکتور – امیتر ترانزیستور در حالت اشباع کمتر باشد تا ترانزیستور بتواند جریان مورد نیاز برای فعال شدن بوبین را تامین کند.

برای راه اندازی رله با میکروکنترلر بیس ترانزیستور را به یکی از پایه های میکرو کنترلر که به صورت خروجی تعریف شده است وصل می کنیم. جریانی که این پایه می تواند تامین کند در راه اندازی مدار مهم است، چرا که ممکن است با توجه به مشخصات میکروکنترلر جریان کافی برای به اشباع بردن ترانزیستور را نتواند تامین کند. برای رفع این مشکل می توان از ترانزیستور دارلینگتون یا ماسفت MOSFET استفاده کرد.

این مطلب ترجمه مقاله فنی Analog Devices هست با عنوان اصلی Optimizing Precision Photodiode Sensor Circuit Design که توسط کاراکیت برای شما آماده شده. در این مقاله چالشهای مربوط به طراحی مدارهای مبتنی بر اندازه گیری میزان نور به وسیله فتودیودها بررسی شده و به لحاظ فنی خیلی با ارزشه. به این امید که مفید باشه.

بهینه سازی طراحی مدار سنسور فتودیود دقیق

فتودیود ها جریانی متناسب با نوری که به محل فعال آنها برخور می کند تولید می کنند. بیشتر پروژه های اندازه گیری شامل یک مدار تقویت کننده transimpedance هستند که جریان فتودیود را به ولتاژ خروجی تبدیل می کند. یک نمونه از این تقویت کننده در زیر دیده می شود.

این مدار فتودیود را در حالت فتوولتاییک به کار می گیرد در حالی که آپ امپ ولتاژ فتودیود را روی مقدار 0 نگه می دارد. این متداول ترین پیکره بندی برای کاربردهای دقیق است. نمودار ولتاژ به جریان فتودیود بسیار شبیه یک دیود معمولی است با این تفاوت که کل نمودار بسته به میزان نور به بالا یا پایین شیفت پیدا می کند. شکل 2 الف تابع تبدیل یک فتودیود نوعی را نشان می دهد. شکل 2 ب بزرگ شده قسمتی از همان تابع تبدیل است و نشان می دهد که فتودیود حتی بدون هیچ نوری ، چگونه یک خروجی کوچک تولید می کند. این جریان تاریک با افزایش ولتاژ معکوس فتودیود زیاد می شود. بیشتر تولیدکنندگان جریان تاریک را در ولتاژ معکوس 10mV ذکر می کنند.

وقتی که نور به ناحیه فعال فتودیود برخورد کند جریان از کاتد به آند برقرار می شود. در حالت ایده آل همه جریان فتودیود از مقاومت فیدبک شکل 1 می گذرد و ولتاژ خروجی برابر با ضرب جریان فتودیود در مقاومت فیدبک در خروجی ایجاد می نماید. هر چند این مدار ساده به نظر می رسد اما چند چالش وجود دارد که برای دستیابی به بهترین کارایی در سیستمتان برآنها فایق آیید.

DC ملاحظات

اولین چالش انتخاب یک آپ امپ است که مشخصات DC آن با نیازهای کار شما همخوانی داشته باشد. دقیق ترین کاربردها ولتاژ افست ورودی پایین را در بالای فهرست قرار می دهند. ولتاژ افست ورودی در خروجی تقویت کننده ظاهر می شود و در خطای کل سیستم وارد می شود، اما در تقویت کننده فتودیود خطای بیشتری تولید می کند. ولتاژ افست ورودی دوسر فتودیود ظاهر می شود و جریان تاریک را افزایش می دهد که این خود موجب زیاد شدن خطای سیستم می شود. شما می توانید افست DC اولیه را با کوپلینگ AC یا کالیبراسیون نرم افزاری یا هردو حذف کرد، اما داشتن خطای افست زیاد محدوده دینامیک سیستم را کاهش می دهد. خوشبختانه اناخابهای زیادی برای آپ امپ با افست ورودی چند صد و یا چند ده میکروولتی وجود دارد.

ویژگی DC مهم بعدی جریان نشتی ورودی است. هر جریانی که وارد آپ امپ یا هرجایی غیر از مقاومت فیدبک می شود خطای اندازه گیر ایجاد می نماید. هیچ آپ امپی با جریان بایاس صفر وجود ندارد اما بعضی آپ امپ ها با ورودی CMOS و JFET جریان بایاس نزدیک به صفر دارند. مانند AD8615 و AD549. جریان بایاس ورودی تقویت کننده های با ورودی FET با افزایش دما به صورت نمایی زیاد می شود. ویژگی بسیاری از آپ امپ ها در دمای 85 درجه یا 125 درجه سانتی گراد ذکر شده است. اما برای آنهایی که اطلاعاتشان ذکر نشده یک تقریب خوب این است که جریان با افزایش هر 10 درجه سانتی گراد، دو برابر می شود.

یک چالش دیگر طراحی مدار و طرحی است که مسیرهای نشتی خارجی را که می توانند عملکرد آپ امپ با جریان بایاس ورودی پایین شما را خراب کنند، به حداقل برساند. متداول ترین مسیر نشتی خارجی از درون خود برد چاپی است. برای مثال شکل 3 یک پیکره بندی ممکن برا تقویت کننده فتودیود شکل 1 را نشان می دهد. مسیر صورتی خط +5V است که تقویت کننده را تغذیه می کند و به سایر قطعات برد می رود. اگر مقاومت بین این مسیر و مسیری که جریان فتودیود از آن می گذرد 5MΩ باشد ( در شکل 3 با RL نشان داده شده ) به اندازه 1nA جریان از خط +5V به تقویت کننده وارد می شود. این مساله قطعا هدف انتخاب آپ امپ با جریان ورودی 1pA را نابود می کند. یک راه برای کاهش این جریان نشتی افزایش مقاومت بین مسیر حامل جریان فتودیود و سایر مسیرهاست. این کار به سادگی با اضافه کردن فاصله بین مسیرها ( Routing keep-out ) امکان پذیر است. برای بعضی کاربردهای خیلی حساس، بعضی مهندسان مسیرها را حذف می کنند و فتودیود را مستقیما روی پایه های ورودی آپ امپ لحیم می نمایند.

یک راه دیگر کشیدن مسیر محافظ نزدیک به مسیر حامل جریان فتودیود است که که تضمین می دهد هر دو با ولتاژ یکسانی راه اندازی می شوند. شکل 4 یک مسیر محافظ را دور شبکه حامل جریان فتودیود نشان می دهد. در این مدار جریان نشتی به جای اینکه از مسیر +5V به تقویت کننده وارد شود، به مسیر گارد وارد می شود. در این مدار اختلاف ولتاژ بین مسیر محافظ و ورودی فقط نتیجه ولتاژ افست ورودی آپ امپ خواهد بود، که دلیل دیگری برای انتخاب یک تقویت کننده با ولتاژ افست پایین می باشد.

AC ملاحظات

هرچند اغلب کاربردهای دقیق فتودیود سرعت پایین هستند، اما هنوز لازم است که مطمئن شویم عملکرد AC سیستم برای این کاربرد کافی است. دو نگرانی عمده در اینجا پهنای باند سیگنال ( یا پهنای باند حلقه بسته ) و پهنای باند نویز است.

پهنای باند حلقه بسته به پهنای باند حلقه باز تقویت کننده، مقاومت بهره و ظرفیت خازنی ورودی کل بستگی دارد. ظرفیت خازنی فتودیود می تواند از چند پیکوفاراد برای فتودیودهای سریع، تا چندهزار پیکوفاراد برای فتودیود دقیق با مساحت خیلی زیاد تغییر کند. اضافه کردن خازن به ورودی آپ امپ باعث ناپایدار شدن آن می شود مگر اینکه با اضافه کردن خازن به مقاومت فیدبک جبران شود. خازن فیدبک پهنای باند سیستم حلقه بسته را محدود می کند. می توانید از معادله زیر برای محاسبه حداکثر پهنای باند ممکن سیستم حلقه بسته که به یک حاشیه فاز 45 درجه می انجامد استفاده کنید.

که:
Fu: فرکانس بهره واحد تقویت کننده است.
Rf: مقاومت فیدبک است.
Cin: ظرفیت خازنی ورودی است که شامل ظرفیت خازنی فتودیود و سایر خازنهای مزاحم برد می شود.
CM: ظرفیت خازنی مد مشترک آپ امپ است.
CD: ظرفیت خازنی تفاضلی آپ امپ است.

برای مثال اگر شما کاربردی با ظرفیت خازنی فتودیود 15pF و بهره ترنس امپدانس 1MΩ داشته باشید ، معادله بالا پیش بینی می کند که شما به یک تقویت کننده با بهره 1 و پهنای باند 95MHz نیاز دارید تا به پهنای باند سیگنال 1MHz دست پیدا کنید. این محاسبات برای حاشیه فاز ˚45 است که باعث ایجاد قله در تغییرات پله ای در سیگنال می شود. شاید بخواهید قله ها را با طراحی برای حاشیه فاز ˚60 کاهش دهید، که یک تقویت کننده سریع تر لازم دارد. به همین دلیل قطعاتی مانند ADA4817-1 با حداکثر جریان بایاس ورودی 20pA و بهره واحد در فرکانس 400MHz برای کاربردهای فتودیود با بهره خیلی بالا ، حتی برای پهنای باند محدود مناسب هستند.

در بیشتر سیستمها ظرفیت خازنی فتودیود بر ظرفیت خازنی ورودی مدار غالب است، اما بعضی کاربردها به توجه بیشتری در انتخاب آپ امپ با ظرفیت خازنی ورودی پایین نیاز دارند. برای مثال شکل 5 پایه های ADA4817-1 را نشان می دهد که خروجی آپ امپ را به یک پایه کنار پایه ورودی وارونگر وصل می کند.

نویز سیستم نیز یکی چالشهای نوعی هنگام طراحی با فتودیود است. عوامل اصلی نویز خروجی نویز ولتاژ ورودی تقویت کننده و نویزجانسون (حرارتی) مقاومت فیدبک است. نویز مقاومت فیدبک بدون تقویت در خروجی ظاهر می شود. اگر مقاومت فیدبک را برای تقویت بیشتر زیاد کنید، افزایش نویز ناشی از مقاومت بهره تنها متناسب با جذر افزایش مقاومت زیاد خواهد شد. این در عمل بدین معنی است که بهتر است برای تقویت بیشتر، مقاومت بهره را تا حد ممکن زیاد کنیم به جای اینکه یک طبقه تقویت کننده اضافه کنیم، که نویز را به صورت خطی با بهره افزایش می دهد.

نویز خروجی تقویت کننده حاصل ضرب نویز ولتاژ ورودی در بهره نویز تقویت کننده است. بهره نویز نه تنها با مقاومت فیدبک، بلکه با خازنهای فیدبک و ورودی تعیین می شود، بنابراین در فرکانسهای مختلف ثابت نیست. شکل 6 یک نمودار نوعی بهره نویز تقویت کننده را بر حسب فرکانس به همراه برهم نهی بهره حلقه بسته به عنوان مرجع نمایش می دهد. دو چیزی که می توان از این نمودار به دست آورد این است که نویز خروجی در برخی فرکانسها افزایش می یابد و بازه فرکانسی که قله نویز می تواند پایینتر از فرکانس قطع پهنای باند حلقه بسته تقویت کننده باشد.

از آنجا که نمی توان از این پهنای باند استفاده کرد برای کاهش نویز از یک فیلتر پایین گذر استفاده نمایید.

استفاده از بهره های قابل برنامه ریزی برای گسترش بازه دینامیک

از آنجا که نویز جانسون (حرارتی) با جذر مقاومت فیدبک زیاد می شود، قابل قبول است که به جای افزودن طبقات تقویت کننده هر چقدر می توانیم بهره تقویت کننده فتودیود را افزایش دهیم. شما می توانید با اضافه کردن بهره های قابل یرنامه ریزی طبق شکل 7 یک گام دیگر نیز به پیش بروید.

کلید S1 مسیر فیدبک دلخواه را انتخاب می کند تا بتوان برای هر سیگنال بهره بهینه را برگزید. متاسفانه سوییچهای آنالوگ دارای مقاومت حالت وصل هستند که خطای بهره را به مدار ما تحمیل می کنند. این مقاومت وصل با ولتاژ اعمال شده و دما و سایر عوامل تغییر می کند و باید راهی برای خنثی کردن اثر آن در مدار پیدا نمود. شکل 8 نشان می دهد چگونه می توانید با استفاده از دو کلید خطای ناشی از مقاومت وصل در حلقه فیدبک را حذف کنید. هرچند مقاومت کلید S1 همچنان داخل حلقه قرار دارد، اما کلید S2 خروجی را مستقیما به مقاومت بهره متصل می نماید که باعث می شود هرگونه خطای ناشی از عبور جریان از مقاومت S1 حذف شود. یکی از نقاط ضعف این روش این است که مدار دیگر آن امپدانس خروجی خیلی پایین تقویت کننده را ندارد، چرا که شامل مقاومت وصل S2 است. این معمولا مشکل بزرگی نیست اگر مرحله بعد امپدانس ورودی بالایی داشته باشد، مانند یک ADC.

استفاده از مدولاسیون و تشخیص همزمانی برای کاهش نویز

بسیاری از کاربردهای دقیق درگیر اندازه گیری یک نور با سطح DC می شوند که توسط یک نمونه جذب یا بازتاب می شود.

در حالیکه بعضی کاربردها جلوی همه نور محیط را می گیرند، بسیاری از سایر سیستمها به ویژه در محیطهای صنعتی، باید در برابر نور محیط کار کنند. در این وضعیت می توانید منبع نور را مدوله کنید و با استفاده از تشخیص هم زمانی سیگنالتان را از طیف فرکانس پایین که اختلال الکتریکی و اپتیکی در آن بیشتر است دور نمایید. ساده ترین راه مدولاسیون روشن و خاموش کردن سریع منبع نور است. بسته به منبع نور می توانید به صورت الکترونیکی آن را مدوله کنید یا مثل دستگاه های قدیمی از یک پروانه استفاده نمایید.

برای مثال اگر می خواهید جذب نور توسط یک ماده را برای تعیین غلظت آن اندازه گیری کنید، می توانید نور را با نرخ چند KHz برش بزنید. شکل 9 نشان می دهد که این کار چگونه باعث می شود اندازه گیری ها از اکثر آلودگی های نوری فرکانس پایین که معمولا در بیشتر محیط ها وجود دارند ، مانند تغییرات نور محیط در طول روز و لامپ های مهتابی 50 یا 60 هرتز فاصله بگیرد.

از آنجا که شما فرکانس مدولاسیون سیگنال را کنترل می کنید، می توانید از کلاک مشابه برای دمدوله کردن هم زمان نور دریافتی استفاده کنید. مدار شکل 10 یک دمدولاتور همزمان بسیار ساده است. ولتاژ خروجی تقویت کننده فتودیود کوپل AC شده و بعد از ایک تقویت کننده با بهره قابل برنامه ریزی 1 و -1 عبور می کند. کلید بهره زمان بندی شده است که دقیقا وقتی نور باید وصل باشد بهره +1 و وقتی نور باید قطع باشد -1 باشد. در حالت ایده آل خروجی یک ولتاژ DC خواهد بود که متناظر با دامنه پالسهای نوری است. فیلتر پایین گذر هر سیگنال دیگری را که با کلاک مدولاسیون همزمان نباشد حذف می کند. فرکانس قطع فیلتر پایین گذر برابر عرض فیلتر میان گذر حول فرکانس مدولاسیون است. برای مثال اگر فرکانس مدولاسیون 5KHz باشد و شما از یک فیلتر پایین گذر 10Hz استفاده کنید خروجی مدار سیگنالهای از 4.99KHz تا 5.01KHz را عبور خواهد داد. کاهش پهنای باند فیلتر پایین گذر حذف قوی تری را در ازای زمان نشست کند تر نتیجه می دهد.

شکل 9 یک ایراد دیگر را در صورت برش زدن نور نشان می دهد. شکل موج حاصل، در حوزه فرکانس یک خط تنها نیست ( که یک سینوسی نیاز داشت ) بلکه شامل یک خط در فرکانس برش و هامونیکهای فرد آن است. هر نویز موجود در هارمونیکهای فرد فرکانس برش با حداقل تضعیف در خروجی ظاهر خواهد شد. این مشکل را می توان به طور کامل با مدولاسیون سینوسی از بین برد که البته مدار پیچیده تر یا گران تری را می طلبد. راه حل دیگر انتخاب یک فرکانس اساسی خاص است که هارمونیکهای آن با هیچ منبع تداخل شناسایی شده ای یکی نباشد. همچنین می توان کارکرد مشابه شکل 10 را در نرم افزار پیاده سازی نمود. شما می توانید سیگنال نور برش خورده را همزمان با کلاک مدولاسیون نمونه برداری کنید و با استفاده از تکنیک های پردازش سیگنال دیجیتال اطلاعات دامنه را در فرکانس دلخواه استخراج نمایید.

همون طور که می دونید میزان روشنایی یک LED با جریانی که از اون می گذره رابطه مستقیم داره. یعنی برای تنظیم میزان روشنایی یک LED باید جریانی رو که از اون می گذره کنترل کنید.
مداری که در شکل زیر دیده می شه یک منبع جریان کنترل شده با ولتاژ ساده است.

عملکرد مدار منبع جریان

اساس کار مدار به این صورته که پایه مثبت OP AMP به ولتاژ کنترل متصله. این ولتاژ در این مدار با یک ولوم یا پتانسیومتر تنظیم می شه. البته راه های مختلفی برای تنظیم این ولتاژ وجود داره. مثل استفاده از PWM که داره به وسیله یک میکروکنترلر تامین می شه.
پایه منفی OP AMP به امیتر ترانزیستور متصل شده. با توجه به اینکه در OP AMP ولتاژ پایه های ورودی با هم برابر هستند بنابراین جریانی که از مقاومت R1 عبور می کنه همیشه برابر Vref/R1 خواهد بود. با توجه به اینکه جریان ورودی OP AMP و جریان ورودی بیس ترانزیستور خیلی کمه می تونیم بگیم جریانی که از LED می گذره تقریبا با جریان R1 برابره.
انتخاب Vcc و R1 باید طوری باشه که به قطعات آسیبی نرسه. انتخاب LM358 اینه که نیاز به منبع تغذیه دوبل نیست و با یه تغذیه 5 ولت هم راه اندازی می شه.
ترانزیستور BC547 هم یه ترانزیستور ارزون قیمته که برای راه اندازی LED توان پایین کفایت می کنه. اما در صورتی که بخوایم LED توان بالا یا هر باری رو راه اندازی کنیم که جریان یا ولتاژ بیشتری نیاز داشته باشه باید ترانزیستور و مقاومت مناسب رو انتخاب کنیم.
درباره ولوم یا پتانسیومتر هم باید گفت که لازم نیست مقدارش رو کمتر انتخاب کنیم. در واقع هر چی مقدارش کمتر شه صرفا تلفات بیشتری خواهیم داشت.

یکی از خصوصیات تقویت کننده ها مقاومت ورودی هست. معمولا گفته می شه که بهتره مقاومت ورودی تقویت کننده زیاد باشه و علتش هم چندان پیچیده نیست. چرا که اگه مقاومت ورودی مدار در مقابل مقاومت منبع سیگنال به اندازه کافی بزرگ نباشه ولتاژ تقسیم می شه و در نقطه ورود به تقویت کننده افت می کنه.

همچنین اگه مقاومت ورودی به اندازه کافی بالا نباشه جریان بیشتری از منبع سیگنال کشیده می شه.

البته این موارد زمانی صادق هستند که فرض ما بر این باشه که جنس سیگنال ما ولتاژ باشه نه جریان.

حالا فرض می کنیم که یک تقویت کننده داریم و از مقاومت ورودیش اطلاعی نداریم. به چه روشی می تونیم مقاومت ورودی رو پیدا کنیم؟

می تونیم تقویت کننده رو مثل یک جعبه در نظر بگیریم که معلوم نیست توش چه خبره و اون رو طبق شکل زیر مدل می کنیم:

مقاومت ورودی تقویت کننده همون Zin هست. برای اینکه بتونیم این مقدار رو پیدا کنیم یک مقاومت متغیر که توی مدار با pot نشون داده شده رو به ورودی تقویت کننده وصل می کنیم و سر دیگه اون رو به یک فانکشن ژنراتور. خروجی تقویت کننده رو هم به اسیلسکوپ وصل می کنیم.

مقدار pot رو به 0 اهم می رسونیم و فرکانس فانکشن ژنراتور رو 1000 هرتز و ولتاژ اون رو 1 ولت تنظیم می کنیم. دامنه ولتاژ خروجی رو روی اسیلسکوپ اندازه می گیریم و مقدار مقاومت pot رو به تدریج زیاد می کنیم و این کار رو تا اونجا انجام می دیم که اندازه ولتاژ خروجی روی اسیلسکوپ به نصف مقدار اولیه کاهش پیدا کنه. حالا اگه pot رو از مدار خارج کنیم مقاومت دو سر اون برابر مقاومت ورودی تقویت کننده یعنی Zin خواهد بود.

برای آشنایی با چگونگی اندازه گیری مقاومت خروجی تقویت کننده اینجا کلیک کنید.

مداری که در زیر شماتیکش رو ملاحظه می کنید می تونه سرعت یا دور یک فن DC رو کنترل کنه. این مدار در سایت pcbheaven معرفی شده و ما اون رو بستیم و عملکردش رو بررسی کردیم.

کنترل دور فن

قبل از هر چیز دقت کنید که این فن دو سیمه س و تاکومتر نداره.
کارکرد مدار خیلی ساده س و دردسرهای کنترل سرعت فن با PWM رو نداره.
ولتاژ بیس ترانزیستور به کمک یک ولوم یا پتانسیومتر تعیین می شه و در نتیجه جریانی که از فن می گذره تغییر می کنه و باعث می شه دورش کم و زیاد بشه.
با بالا رفتن جریانی که از کلکتور می گذره ولتاژی که روی امیتر میفته بیشتر می شه و بنابراین بین کلکتور و امیتر ترانزیستور اختلاف ولتاژ کمتری ایجاد می شه و این به این معنیه که هر چه سرعت فن بالاتر باشه اتلاف حرارتی کمتری روی ترانزیستور داریم و بازده بیشتر می شه، و به همین ترتیب اگه دور فن کم باشه ترانزیستور گرمای بیشتری تولید می کنه.
بنابراین ترانزیستور باید مطابق با جریان فن انتخاب بشه و در صورت نیاز هیت سینک هم به کار بره.
درباره خازن C1 هم باید گفت که وجودش الزامی نیست و جلوی نوسانات رو می گیره و اگه با اسیلسکوپ نگاه کنید می بینید که بدون این خازن شکل موج ولتاژ فن دارای ریپل هست.

اگه از کسانی هستین که قصد استفاده از سینتی سایزرهای دیجیتال DDS رو دارین احتمالا متوجه شدین که خروجی این ماژول ها دامنه زیادی نداره و مثلا در مورد AD9850 که همینجا در کاراکیت معرفی شده اگه تغذیه 5 ولت باشه دامنه خروجی 0.5 ولت خواهد بود.
بنابراین به یه مدار تقویت کننده احتیاج داریم که بتونه ولتاژ رو به حد دالخواه تقویت کنه و جریان مورد نیاز برای بارهای با امپدانس کم رو هم فراهم کنه.
یکی از مدارهای خیلی مناسب تقویت کننده دو طبقه فیدبک داری هست که شکلش در زیر دیده میشه:

این تقویت کننده برای ولتاژ تغذیه 60 ولت طراحی شده و مقاومتها باید وات بالا باشند. در صورتی که بخواین از ولتاژ تغذیه کمتر استفاده کنین باید مقدار مقاومتها رو کم کنین.
خازنهای کوپلینگ در ورودی و خروجی قرار داده شدند تا جلوی بایاس DC گرفته بشه ، در صورتیکه از این خازنها استفاده نشه احتمال آسیب دیدن DDS یا بار یا خود تقویت کننده وجود داره.
ترانزیستوری که استفاده شده BD139 هست که می تونه ولتاژ و جریان مورد نیاز رو تحمل کنه.
و آخرین نکته هم اینه که باید زمین تقویت کننده به زمین DDS متصل بشه.